Главная
Поиск
Карта сайта
Афоризмы
Этика и мораль
Графология
Парапсихология
Конфликтология
Психика и болезни
Нумерология
Психологические тесты
Физиогномика
Характерология
Хиромантия
Язык телодвижений
Отрасли психологии
Знаменитые психологи
Моделирование лица
Партнеры
Психолог онлайн
Психофизиология
Изучения различий
Темперамент и личность
Нервная система
Индивидуальность
Способности человека
Деятельность человека
Психологическая защита
Методики изучения
Словарь терминов



Искусственный интеллект PDF Напечатать Е-мейл
Оглавление статей
Искусственный интеллект
Страница 2
Страница 3

От природы мне свойственно искать самые простые пути для достижения поставленных целей. Работать над вопросами мозга в Intel  было бы путем наименьшего сопротивления. После отказа Хоффа такой вариант отпал, поэтому я взялся за следующий, который пришел мне в голову. Итак, я решил поступить в Массачусетсский технологический институт, известный благодаря проводившимся в нем исследованиям в сфере искусственного интеллекта, к тому же добираться до него тоже было недалеко. Чего еще можно пожелать? У меня была очень хорошая подготовка в области информационных технологий – это плюс. Я мечтал создавать разумные механизмы – еще один плюс. Я хотел изучать мозг для того, чтобы понять, как должны работать эти механизмы… Вот тут и возникала проблема. По представлениям ученых, работающих в лаборатории искусственного интеллекта Массачусетсского института, данная цель не могла считаться научно обоснованной.

Мои усилия были сравнимы с ударами головы о каменную стену. Массачусетсский институт был колыбелью искусственного интеллекта. Когда я подавал документы, он был пристанищем для десятков одаренных исследователей, которые были одержимы идеей программирования компьютеров, способных мыслить подобно человеку. С точки зрения этих ученых, визуальное восприятие, дар речи, робототехника и математика были попросту задачами программирования. Компьютер мог воспроизвести абсолютно все, что создает мозг, и даже больше, так зачем тогда усложнять себе жизнь, пытаясь постичь компьютер биологический? Изучение мозга только создаст дополнительные ограничения для исследователей, отвлечет их от насущных задач. Таким образом, священная миссия кибернетиков состоит в том, чтобы разрабатывать компьютерные программы, которые вначале будут имитировать, а потом и превзойдут человеческие возможности. Одним словом, маститые ученые придерживались принципа «Цель оправдывает средства» и совершенно не интересовались тем, как работает настоящий мозг. Некоторые из них даже кичились тем, что ни в грош не ставят нейробиологию.

Я интуитивно считал такой подход вопиюще неправильным, по сути – ведущим в никуда. Фундаментальные принципы работы компьютера и функционирования человеческого разума в корне различны. Основой первой является программирование, а второго – процесс самообучения. Компьютер, которым управляет центральный микропроцессор, предназначен для максимально точного исполнения заданных функций, а живой ум, у которого отсутствует единый центр контроля, наделен гибкостью и устойчивостью к возможным неудачам. Список различий не исчерпывается указанными особенностями. Я понял, что основной причиной, препятствующей созданию разумных механизмов, является их транзисторная структура. Именно осознание последнего вселило в меня глубокую уверенность в том, что мозг и компьютер – фундаментально различны. Не имея доказательств, на подсознательном уровне я испытывал непоколебимую уверенность. В конце концов я пришел к выводу, что хотя искусственный интеллект не поможет создать разумный компьютер, зато он вполне пригоден для изобретения других полезных устройств.

С готовностью принимая вызов, брошенный Фрэнсисом Криком, я желал досконально изучить анатомию и психофизиологию мозга и разработать, наконец, единую теорию разума. Мой исследовательский интерес был прикован к неокортексу – большой части головного мозга, развившейся у млекопитающих в процессе эволюции позже всего и отвечающей, как предполагается, за высшие интеллектуальные функции, такие как речь, обучение, память и мышление, одним словом – за умственную деятельность.

К сожалению, преподаватели и студенты Массачусетсского института не поддержали меня в этих стремлениях. Мне прямо сообщили, что в сфере создания искусственного интеллекта нет места изучению живого мозга. В 1981 году мои документы были отклонены приемной комиссией.

Согласно распространенному мнению, искусственный интеллект давно существует, и единственная загвоздка в том, что современным механизмам не хватает мощности для его эффективной работы. Кибернетики, работающие в сфере искусственного интеллекта, убеждены в том, что смогут создать мыслящий компьютер, увеличив объем его памяти и ресурсов для обработки данных. Но не тут‑то было. Ключевой недостаток искусственного интеллекта – отсутствие зоны, отвечающей за понимание. Чтобы понять, на какой стадии произошло отклонение от правильного пути, давайте обратимся к истории создания искусственного интеллекта.

Искусственный интеллект как подход зародился вместе с появлением цифровых компьютеров. Английский математик Алан Тьюринг, которого считают одним из пионеров идеи искусственного интеллекта, утверждал, что, несмотря на различия, все вычислительные машины по сути своей одинаковы. Как часть доказательства он предлагал представить компьютер на основе всего лишь трех составляющих: устройства для обработки данных, бумажной ленты и прибора, выполняющего функции считывания и записи на ленту по мере ее продвижения. Бумажная лента предназначалась для записи данных в двузначной системе исчисления (знаменитые 0 и 1 в современных компьютерных кодах). Замечу, что события происходили задолго до изобретения чипов памяти или дисководов, поэтому для хранения данных Тьюринг предложил использовать бумажную ленту (машина Тьюринга являет собой «предельный» случай компьютера, когда сняты ограничения на размеры памяти, ведь лента бесконечна). Устройство для обработки данных (в наши дни его заменил центральный микропроцессор) подчиняется набору определенных правил по считыванию и редактированию данных на бумажной ленте. Тьюринг математически доказал, что если выбрать верный набор правил для центрального микропроцессора и вставить бесконечно длинную бумажную ленту, то процессор сможет выполнить любой заданный набор операций. Это был один из прототипов вычислительных машин, которые впоследствии получили название универсальные машины Тьюринга.  Независимо от постановки задачи – будь то вычисление квадратного корня, траектории полета пули, участия в играх, редактирования визуального изображения, осуществления банковских операций, – все операции кодировались с помощью нуля и единицы. Последнее в свою очередь означало, что любая машина Тьюринга может быть спрограммирована для выполнения таких операций. Информационная обработка – это информационная обработка данных, которая представляет собой информационную обработку данных, т. е. все цифровые компьютеры логически равны друг другу.

Выводы Тьюринга были правильными и исключительно плодотворными. Они положили начало революции вычислительной техники. Затем Тьюринг обратился к теме создания разумных компьютеров. Прежде всего, следовало предложить формальное определения понятия разум,  и Тьюринг нашел оригинальный способ проверки наличия интеллекта. Его метод, впоследствии получивший название теста Тьюринга, состоял в следующем: если компьютер сможет обмануть человека, который будет задавать ему различного рода вопросы, так, чтобы последний воспринимал отвечающего не как машину, а как другого человека, тогда компьютер может считаться разумным. Вот таким образом с помощью теста Тьюринга и его оценочных критериев, а также машины Тьюринга как посредника и появились на свет первые ростки истории создания искусственного интеллекта. Основополагающей догмой оставалась следующая: мозг – это просто еще одна разновидность компьютера, а значит, справедливо и обратное: искусственный интеллект должен воспроизводить мышление человека.

Приверженцы теории искусственного интеллекта проводили своего рода параллель между вычислительным процессом и процессом мышления. Они говорили:

 

«Послушайте, а ведь наиболее выдающиеся изобретения человеческого разума, вне всякого сомнения, возникают в результате использования абстрактной символики. Компьютеры используют символы, как и люди в процессе коммуникации, разговаривая или слушая, оперируют символами, которые мы называем словами (и символы эти подчиняются строгим правилам грамматики). Или возьмем игру в шахматы. Во время партии игроки используют мысленные символы, которые описывают расположение и возможности каждой фигуры на доске. Или же что такое зрение? Зрение – это символьное восприятие объектов, которые мы видим, их названий, свойств, расположения в пространстве. Безусловно, абстрактное мышление человека обусловлено мозгом, а не основано на работе вычислительных машин, но ведь Тьюринг убедительно доказал, что способ применения и особенности комбинирования символов не играют никакой роли. Мы можем создать машину из гаек и проводов, используя систему электронных переключателей или используя сети нейронов. Какая в сущности разница, главное – чтобы созданная вещь по своей функциональности стала эквивалентом универсальной машины Тьюринга».

 

В 1943 году в одном из влиятельных научных изданий была опубликована статья нейропсихолога Уоррена Мак‑Калоха и математик Уолтера Питтса. Ученые описали механизм осуществления нейронам: цифровых функций, т. е. того, как нервные клетки могут воссоздавать формальную логику, положенную в основу работы компьютеров. Нейроны вполне могут выполнять функцию логических входов/выходов как это принято называть у разработчиков электронно‑вычислительной техники. Логические входы служат для выполнения операций «И» «ИЛИ», «НЕ». Микропроцессоры вычислительных машин состоят и: миллионов логических входов, которые связаны между собой в очень четкую и сложную схему. Центральный микропроцессор – это не что иное как совокупность логических входов.

Мак‑Калох и Питтс подчеркивали: вполне возможно, что нейроны тоже связываются между собой для выполнения тех или иных логических функций. Вероятно, они получают данные друг от друга, затем обрабатывают их и на основе обработки подают выходящие данные. Это означает, что нейроны являются живыми логическими входами. Таким образом, – продолжали развивать мысль двое ученых, – предположительно мозг по своему строению состоит из "И"‑входов, «ИЛИ»‑входов. а также других логических элементов, образованных нейронами, что само по себе аналогично структуре схем в цифровой электронной плате. Из публикации ясно, что исследователи лишь предполагали, что мозг так устроен, но не были в этом уверены. Рассуждая логически, описанный выше принцип работы нейронов не выглядит абсурдным. Теоретически нейроны вполне могут выполнять цифровые функции. С другой стороны, ни у Мак‑Калоха, ни у Питтса не возник вопрос: а действительно ли нейтроны взаимодействуют между собой именно таким способом? Несмотря на недостаток биологических доказательств, они выдвинули постулат, что мозг является разновидностью компьютера.

Следует отметить, что философия искусственного интеллекта пребывала под значительным влиянием бихевиоризма, наиболее влиятельного направления психологической науки первой половины XX века. Бихевиористы утверждали, что мозг является непознаваемым, и проводили аналогию с черным ящиком. С другой стороны, в исследованиях поведения животных была установлена связь между внешними факторами, влияющими на их поведение, и ответной реакцией. Исходя из этого, бихевиористы утверждали, что мозг включает рефлекторные механизмы, и, для того чтобы побудить животное к определенному типу поведения, нужно использовать методы поощрения и наказания. Если последовательно придерживаться упомянутого подхода, то нет необходимости изучать мозг, в особенности такие беспорядочные субъективные ощущения, как страх или голод, а также функции сознания. По вполне понятным причинам данное направление потеряло популярность во второй половине XX века, в то время как теория искусственного интеллекта продолжала развиваться.

После окончания Второй мировой войны электронные цифровые вычислительные машины получили более широкое применение. Первопроходцы создания искусственного мозга были полны энтузиазма. Научить компьютер переводить с одного языка на другой? Никаких проблем! Это напоминает взлом кода. Единственное, что для этого нужно, – соотнести каждый символ системы А с его аналогом в системе Б. Визуализация? Ни малейших трудностей. Человечеству давно известны теоремы о ротации, изменении масштабов, перемещении в пространстве, а значит, на их основе можно построить компьютерные алгоритмы, т. е. мы на верном пути. Ученые мужи, бьющиеся над созданием искусственного интеллекта, делали громкие заявления о том, как искусственный мозг сначала сравняется по своему потенциалу с человеческим разумом, а со временем и превзойдет его.

По иронии судьбы программисты смогли создать программу, которая была очень близка к тому, чтобы пройти тест Тьюринга. Программа, разработанная Джозефом Вейзенбаумом из Массачусетсского технологического института, называлась «Элиза» и копировала поведение врача‑психотерапевта при первичном опросе пациента. Например, если девушка вводит предложение: «Я и мой парень больше не разговариваем», то Элиза спросит: «А расскажи‑ка мне побольше о своем парне», или: «Как по‑твоему, почему ты и твой парень больше не общаетесь?»

Хоть автор программы заявил, что изобрел пародию на поведение психотерапевта, предназначенную лишь для исследования иллюзии понимания, которая часто возникает в разговоре между людьми. Некоторых «Элиза» приводила в изумление.

Более серьезным достижением были программы, подобные «Фигурному миру» – виртуальной комнате, смоделированной из геометрических фигур разных форм и цветов. Вы можете, например, спросить компьютер: «Стоит ли зеленая пирамида на большом красном кубе?», или же приказать ему: «Положи синий кубик на маленький красный кубик» и т. п. Программа ответит на ваш вопрос или выполнит ваш приказ. Все это было смоделировано и тем не менее работало! Единственным недостатком было то, что работа программы ограничивалась своим собственным мирком геометрических фигур. Программисты не смогли расширить ее функциональность, добившись решения более полезных задач.


<Предыдущая   След.>